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Abstract—In this paper, emphasis has been done on development of 
analytical model capable of performing plastic stress and strain 
analyses for rotating an anisotropic containing varying amount of 
SiC particles in the radial direction. The thermal gradient 
experienced by the disc is the result of breaking action as estimated 
by Finite Element Method. The steady state creep behavior of disc is 
analyzed by Sherby’s constitutive model and Hill's criteria for 
yielding. The creep response of rotating disc is expressed by a 
threshold stress with value of stress exponent as 8. The creep 
parameters characterizing difference in yield stresses have been used 
from the available experimental results in literature. It is concluded 
that for designing a rotating disc, the presence of thermal gradients 
needs attention from the point of view of steady state creep and the 
creep response in anisotropic discs operating under thermal 
gradients are observed to be significantly lower than those observed 
in disc without thermal gradients. 
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1. INTRODUCTION 

Under many service conditions, rotating disc such as discs of 
gas turbines, jet engines, automotive and aerospace braking 
systems are usually operated at relatively higher angular 
velocities. Materials of discs are required to sustain steady 
loads for long period of time under different temperature 
conditions. In such conditions, material may continue to creep 
until its usefulness is seriously impaired. As a result, number 
of researchers has studied the creep behavior in composite 
materials with property of superior heat resistance. Pandey et 
al. [1992] studied the steady-state creep behavior of Al – SiCp 
composites under uniaxial loading condition in the 
temperature range between 623K and 723 K for different 
combinations of particle size and volume fraction of 
reinforcement and found that the composite with finer particle 
size has better creep resistance than that containing coarser 
ones. In Durodola and Attia [2000] investigated the potential 
benefits of using several forms of fiber gradation in FGM 
rotating discs using finite element method and direct 
numerical integration. It was observed that the different forms 
of property gradation modify the stress and displacement 

fields in FGM discs compared with uniformly reinforced 
discs. 

Singh and Ray [2005] have studied creep in rotating discs of 
composite materials. The authors have estimated steady state 
creep response in a rotating isotropic FGM disc without 
thermal gradient using Norton’s power law. It is concluded 
that, in a rotating isotropic FGM disc with linearly decreasing 
particle content from the inner to the outer radius, the steady 
state creep response in terms of strain rates is significantly 
superior compared to that in a disc with the same total particle 
content distributed uniformly. 

Gupta et.al. [2004] have analyzed the creep behavior of a 
rotating disc having constant thickness and made of isotropic 
functionally graded material (FGM). 

The effect of anisotropy on the stress and strain rates have 
been studied and concluded that the anisotropy of the material 
has a significant effect on the creep of a rotating disc [Chamoli 
et al., 2010]. 

Keeping this in mind, the study ends with an effort to 
determine the creep behavior for the particle reinforced 
anisotropic disc with constant thickness in presence of thermal 
gradients and compare it with those anisotropic disc with the 
operating under isothermal conditions. The material 
parameters of creep vary along the radial direction in the disc 
due to varying composition. 

2. Finite Element Analysis of Thermal Gradient in a 
Composite Disc 

The temperature gradient originating due to the braking action 
of the discs has been obtained by Finite Element Analysis. For 
this purpose, the disc with inner radius of 31.75 mm, outer 
radius 152.4 mm and thickness 5mm is supposed. The FGM 
disc was assumed to rotate with an initial rpm of 15,600, 
which is reduced to 15,000 rpm due to breaking action. An 
estimated heat flux of 2/130 mkW  has been applied over an 

annular area with inner radius 142.4 mm and outer radius 
152.4 mm, while the remaining surfaces of the FGM disc have 
been exposed to ambient conditions with convective heat 
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transfer coefficient of KmkW 2/25 and an ambient 

temperature of 303 K. For a particular ring, the thermal 
conductivity )(rK  is assumed to be constant and calculated 

using the rule of mixture as given below 

    
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  (2.1). where the matrix 

conductivity is KmWKm /247 and the diserpersoid 

conductivity is KmWKd /100 . The temperature )(rT , 
obtained at any radius r is presented below in the form of 
regression equation as 
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where the coefficients 
0a , 1a , 2a , 

3a , 
4a and 

5a  for 

different disc are taken from Gupta et al.. 

3. Assumptions in Constant Thickness Disc 

Consider an aluminum silicon-carbide particulate composite 
disc of constant thickness h having inner radius, a  and outer 
radius, b  rotating with angular velocity,  (radian/sec). From 
symmetry considerations, principal stresses are in the radial, 
tangential and axial directions. For the purpose of analysis the 
following assumptions are made: 

1. Stresses at radius of the disc remain constant with time 
i.e. steady state condition of stress is assumed. 

2. Elastic deformations are small for the disc and can be 
neglected as compared to the creep deformations. 

3. Biaxial state of stress ( 0z ) exists at any point of the 

disc. 

4. Frictional shear stress induced due to braking action is 
estimated to be MPa510  , which is very small compared 

to creep stresses and therefore, can be neglected. 

5. The composite shows a steady state creep behavior which 
may be described by following Sherby’s law [1977],  

   nrrM )()( 0 
 (3.1) 
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 are the effective strain 
rate, effective stress, the stress exponent, threshold stress, a 
constant, lattice diffusivity, the sub grain size, the magnitude 
of burgers vector , Young’s modulus. 

The values of material parameters )(rM  and 
)(0 r

in terms 

of )(, rTP  and V have been obtained from the creep results 

by using the experimental results reported by Pandey et al., 

(1992) for Al-SiCp composite under uniaxial loading using the 
following regression equations, 

622.098.42077.038.35 )()(  VrTPerM (3.2) 

11916.200536.1)(01057.003507.0)(0  rTPr (3.3) 

In a FGM disc, with the creep parameters )(rM  and )(0 r  

will vary radially due to variations in temperature )(rT . In 

the present study, the particle size )(P and the particle content 

)(V  are taken as m7.1 and %20  over the entire disc. 

Thus, for a given FGM disc under known temperature both the 
creep parameters are functions of radial distance and their 

values )(rM  and )(0 r  at any radius )(r , could be 

determined by substituting the values of particle size, particle 
content and temperature distributions into Eq. (3.2) and (3.3) 
respectively. 

4. Mathematical Formulation  

The generalized constitutive equations for creep in in an 
anisotropic composite disc under multiaxial stress takes the 
following form, 
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where F , G and H are anisotropic constants of the material. 

,r , z and ,r , z are the strain rates and the 

stresses respectively in the direction ,r   and z .   be the 

effective strain rate and   be the effective stress. For biaxial 

state of stress ),(  r , the effective stress is, 
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Using Eqs. (3.1) and (4.4), Eq. (4.1) can be rewritten as, 
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Similarly from Eq. (4.2), 
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    rz   (4.7) 

where, ,)(


 rrx   is the ratio of radial and tangential 

stresses at any radius r . 

Dividing Eq. (4.5) by Eq. (4.6), we get 
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The equation of equilibrium for a rotating disc with varying 
thickness can be written as, 
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where )(r is the density of FGM disc. 

Boundary Conditions are 
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We get the tangential stress )(   from Eq. (4.9) by using Eq. 

(4.5) and Eq. (4.6), 
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where, 
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The average tangential stress may be defined as 
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Now  rr  can be obtained by integrating Eq. (4.8) within 
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Thus, the tangential stress   and radial stress r  are 

determined by Eq. (4.11) and Eq. (4.16) respectively, for 
anisotropic disc with constant thickness. Then strain rates r ,

  and z calculated from equations (4.5), (4.6) and (4.7). 

5. Numerical Computation 
The stress distribution is evaluated from the above analysis by 
iterative numerical scheme of computation. For rapid 
convergence 75% of the value of )(r  obtained in the 

current iteration has been mixed with 25% of the value of 
)(r obtained in the last iteration for the use in the next 

iteration  

6. Results and Discussion 

A computer program based on the analysis presented was 
developed and results obtained were validated with the 
experimental results by Wahl et. Al (1954) for the same type 
of disc. This comparison is shown in Figure 1. It is observed 
from this figure that there is good agreement between the 
results obtained from present analysis. The ratios anisotropic 
constants of a composite disc which has been taken in this 
study as ,34.1/ FG 64.1/ FH . The stress exponent 

and density of disc material have been taken as 8n  and 
3/4.2812 mkg  respectively. The tangential stress 

operating under a thermal gradient is higher near the inner 
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radius and lowers near the outer radius as compared to the disc 
without thermal gradients as shown in Figure 2. 

The radial stress developing due to rotation in the anisotropic 
disc operating under a thermal gradient is higher over the 
entire radius as compared to the anisotropic disc without 
thermal gradients as shown as Figure 3. The effect of 
imposing any type of gradient separately or simultaneously is 
similar to that in tangential stress. 

In Figure 4, the tangential strain rate decrease significantly 
over the entire radius in the anisotropic discs operating under 
the thermal gradients compared to the discs without thermal 
gradients. Although, the tangential stress in disc under the 
thermal gradients is higher near the inner radius than the disc 
without thermal gradients as shown in Figure 4, but lower 
operating temperature near the inner radius of the disc with 
thermal gradients is able to reduce the creep rate overcoming 
the effect of higher stress. Clearly, temperature near the inner 
radius and tangential stress near the outer radius of the disc 
with thermal gradients dominate the creep behavior when 
compared to those observed in the disc without thermal 
gradients under isothermal condition. 

 
Figure 1 

Comparison of theoretical (present study) and experimental 
strains in a rotating steel disc 
 

In Figure 5, the effect of imposing thermal gradients on the 
radial strain rate in the anisotropic discs is similar to that 
observed for tangential strain rate. The magnitude of radial 
strain rate firstly increases rapidly with radial distance and 
then starts decreasing. It reaches a minimum before increasing 
again towards the outer radius in anisotropic discs in the 
presence/absence of thermal gradients. 
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Figure 2 
Variation of tangential stress along radial distance in 
composite discs with/without thermal gradient 
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Figure 3 

Variation of radial stress along radial distance in composite 
discs with/without thermal gradient 
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Variation of tangential strain rate along radial distance in 
composite discs with/without thermal gradient 

CONCLUSION  
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From above discussion, it can be concluded that  

1. The thermal gradients significantly affect the strain rate 
distribution in an anisotropic particle reinforced disc 
having constant thickness, but its effect on the distribution 
of stresses is relatively small. 

2. Thermal gradient plays a significant role in developing 
the creep strains, it may be taken care of while design a 
rotating disc.  
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Figure 5 

Variation of radial strain rate along radial distance in 
composite discs with/without thermal gradient 
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